Figure 5-1 Schematic diagram of MMLS3 bleeding test procedure: (a) general bleeding test	
procedure; (b) the bleeding test procedure for double seals using CRS-2 emulsion	54
Figure 5-2 Double seal specimen with CRS-2 emulsion and MMLS3 tire after bleeding: (a)	
double seal specimen using CRS-2 emulsion; (b) tire with aggregate	55
Figure 5-3 Chip seal damage caused by bleeding (Lawson et al. 2007)	
Figure 5-4 Surface texture change after bleeding test of single seal with granite 78M aggregate:	:
(a) using CRS-2 emulsion; (b) using CRS-2L emulsion	
Figure 5-5 Surface texture change after bleeding test of single seal with lightweight aggregate:	
using CRS-2 emulsion; (b) using CRS-2L emulsion	
Figure 5-6 Calculated bleeding rates of the single seal	
Figure 5-7 Aggregate loss of single seal after the bleeding test	
Figure 5-8 Surface texture change after bleeding test of double seal with granite 78M aggregate	
at the top layer: (a) using CRS-2 emulsion; (b) using CRS-2L emulsion	
Figure 5-9 Surface texture change after bleeding test of double seal with lightweight aggregate	
the top layer: (a) using CRS-2 emulsion; (b) using CRS-2L emulsion	
Figure 5-10 Calculated bleeding rates of double seal	
Figure 5-11 Aggregate loss of double seals during bleeding test	65
Figure 6-1 Cross-section of the triple seal specimen after MMLS3 loading	
Figure 6-2 Schematic diagram of a typical cross-section of a triple seal	
Figure 6-3 Comparison of rut depth growth at 68°F (20°C)	
Figure 6-4 Comparison of rut depth growth at 104°F (40°C)	
Figure 6-5 Rut depth and surface texture of test specimen at 104°F (40°C): (a) CRS-2; (b) CRS	
2L	
Figure 6-6 Comparison of rut depth growth at 129.2°F (54°C)	72
Figure 6-7 Rut depth and surface texture of test specimen at 129.2°F (54°C): (a) CRS-2; (b)	
CRS-2L	73
Figure 6-8 Cross-section of rutting samples at 129.2°F: (a) CRS-2; (b) CRS-2L	73
Figure 6-9 Comparison of initial rut depth growth after 990 wheel passes	75
Figure 7-1 Flushed surface texture of single seal in Section 5 with granite 78M and CRS-2	
emulsion	78
Figure 7-2 Flushed surface texture of double seal (78M/Lightweight) in Section 3 with CRS-2	
emulsion	78
Figure 7-3 Surface texture of triple seal with aggregate loss at the top layer: (a) Section 1 with	
CRS-2; (b) Section 2 with CRS-2P	79
Figure 7-4 Surface texture of the triple seal for comparison between Phase I and Phase II	
construction programs: (a) CRS-2 in Phase I; (b) CRS-2 in Phase II; (c) CRS-2P in Phase	I;
(d) CRS-2P in Phase II	80
Figure 8-1 Conceptual illustration of the first alternative LCCA program	84
Figure 8-2 Conceptual illustration of the second alternative LCCA program	85
Figure 8-3 RealCost switchboard	
Figure 8-4 Typical alternative panel (Alternative 1)	
Figure 8-5 RealCost analysis options applied and used for computing life-cycle costs	89
Figure 8-6 Traffic data used for analysis	
Figure 8-7 Hourly traffic distribution (default) used for analysis	
Figure 8-8 Results of deterministic life-cycle costs for HMA pavements	
Figure 8-9 Computed deterministic life-cycle costs for chip seal pavements	93